中國農業科學 ?? 2015, Vol. 48 ?? Issue (20): 4021-4032.doi: 10.3864/j.issn.0578-1752.2015.20.004

? 耕作栽培·生理生化·農業信息技術 ? 上一篇    下一篇

水稻生產目標產量確定的理論與方法探討

鄒應斌,夏冰,蔣鵬,謝小兵,黃敏   

  1. 湖南農業大學農學院,長沙 410128
  • 收稿日期:2014-07-07 出版日期:2015-10-20 發布日期:2015-10-20
  • 通訊作者: 鄒應斌,E-mail:[email protected] E-mail:[email protected]
  • 作者簡介:鄒應斌,E-mail:[email protected]
  • 基金資助:
    國家水稻產業技術體系栽培與土肥崗位專家項目(CARS-01-34)

Discussion on the Theory and Methods for Determining the Target Yield in Rice Production

ZOU Ying-bin, XIA Bing, JIANG Peng, XIE Xiao-bing, HUANG Min   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128
  • Received:2014-07-07 Online:2015-10-20 Published:2015-10-20

摘要: 【目的】分析探討水稻生產目標產量確定的理論與方法。【方法】根據2012—2013年在海南澄邁、廣東懷集、廣西賓陽、湖南長沙和貴州興義5個地點進行的不同施氮量(不施氮;中氮:161—176 kg·hm-2;高氮:225 kg·hm-2)、不同品種(雜交稻品種兩優培九、Y兩優1號和常規稻品種黃華占、玉香油占)大田試驗的結果,結合國內外相關文獻報道進行分析探討。【結果】大田試驗表明,即使同一基因型水稻品種的產量也存在顯著或極顯著地點間差異。在施氮條件下(中氮和高氮),各試驗地點的平均產量以興義點最高(兩優培九:13.20—13.54 t·hm-2,Y兩優1號:13.50—13.78 t·hm-2,黃華占:11.26—11.42 t·hm-2,玉香油占:11.32—11.45 t·hm-2),其次為長沙、澄邁、賓陽,而懷集點最低(兩優培九:6.66—6.71 t·hm-2,Y兩優1號:6.96—7.20 t·hm-2,黃華占:6.96—7.11 t·hm-2,玉香油占:7.35—6.86 t·hm-2)。同樣,各試驗地點的平均基礎地力產量(不施氮處理)也是以興義點最高(10.52 t·hm-2),其次為長沙、澄邁、賓陽,懷集點最低(4.53 t·hm-2)。水稻施肥產量(YF)極顯著地依賴于基礎地力產量(YS),中氮和高氮條件下的回歸方程分別為YF﹦0.814YS3.337R2﹦0.824)和YF﹦0.864YS3.094R2﹦0.839),5個地點和4個品種基礎地力產量貢獻率(基礎地力產量占施肥產量的百分率)平均為64.8%—85.5%和72.7%—79.3%。對國內外相關文獻中數據(n= 315)進行分析也顯示,水稻施肥產量與基礎地力產量呈顯著正相關關系(YF﹦1.031YS+2.421,R2=0.523),基礎地力產量貢獻率平均達到67.7%。此外,研究結果還顯示,施肥增產量與基礎地力產量貢獻率呈極顯著的負相關關系;水稻產量與植株氮素吸收量和施氮量呈顯著或極顯著的二次曲線關系。【結論】水稻目標產量的制定應因地而異,即“因地定產”。基礎地力產量是土壤肥力和氣候生產力的綜合反映,可作為水稻生產目標產量確定的依據,通過基于基礎地力產量的回歸方程來確定水稻高產栽培的目標產量。培肥土壤地力是實現水稻目標產量栽培的重要舉措。

關鍵詞: 水稻, 基礎地力產量, 基礎地力產量貢獻率, 目標產量

Abstract: 【Objective】The aim of this study was to discuss the theory and methods for determining the target yield in rice production. 【Methods】The discussion and analysis were based on the results of field experiments conducted in five locations (Chengmai of Hainan Province, Huaiji of Guangdong Province, Binyang of Guangxi Province, Changsha of Hunan Province, and Xingyi of Guizhou Province) in South China with different N application rates (zero N application; moderate N rate: 161—176 kg·hm-2; high N rate: 225 kg·hm-2) and varieties (hybrid varieties Liangyoupeijiu and Y-liangyou 2 and inbred varieties Huanghuazhan and Yixiangyouzhan ) in 2012 and 2013, and the reports of relevant literature in China and abroad.【Results】The field experiments showed that the yield performance of even the same rice variety exhibited significant or extremely significant differences among the five locations. Under N application conditions (moderate and high N rates), Xingyi had the highest average yield (Liangyoupeijiu: 13.20-13.54 t·hm-2, Y-liangyou 1: 13.50-13.78 t·hm-2, Huanghuazhan: 11.26-11.42 t·hm-2, Yuxiangyouzhan: 11.32-11.45 t·hm-2), followed by Changsha, Chengmai, Binyang, and Huaiji had the lowest average yield (Liangyoupeijiu: 6.66-6.71 t·hm-2, Y-liangyou 1: 6.96-7.20 t·hm-2, Huanghuazhan: 6.96-7.11 t·hm-2, Yuxiangyouzhan: 7.35-6.86 t·hm-2). Similarly, the highest average soil-based yield (yield of no N application treatment) was recorded in Xingyi (10.52 t·hm-2), followed by that in Changsha, Chengmai and Binyang, and the lowest average soil-based yield was recorded in Huaiji (4.53 t·hm-2). The rice yield under fertilized conditions (namely fertilized yield) (YF) depended extremely significantly on the soil-based yield (YS). The regression equations under moderate and high N rates were YF=0.814YS+3.337 (R2=0.824) and YF﹦0.864YS+3.094 (R2=0.839), respectively. The contributions of the soil-based yield (the percentage of the soil-based yield in the fertilized yield) ranged from 64.8% to 85.5% on the average of five locations and from 72.7% to 79.3% on the average of four varieties. The analysis of the data (n=315) collected from previous studies also indicated that there was a significant positive linear relationship between the soil-based yield and the fertilized yield (YF=1.031YS+2.421, R2=0.523), and the average contribution of the soil-based yield was 67.7%. In addition, the results showed that yield increased by fertilization was tightly negatively related with soil-based yield contribution; grain yield was significantly quadratically related to plant N uptake and N application rate.【Conclusions】Target yield should be varied from site to site. Soil-based yield comprehensively reflects the paddy soil fertility and the climate productivity, and therefore can be used as the basis to determine the target yield in rice production. The target yield for high yielding cultivation of rice can be determined by the regression equation based on the soil-based yield. Improving soil fertility is an important approach for achieving the target yield.

Key words: rice, soil-based yield, soil-based yield contribution, target yield

福利彩票3d开奖结果